Low cycle fatigue behavior of additively manufactured Ti-6Al-4V under non-proportional and proportional loading
DOI:
https://doi.org/10.3221/IGF-ESIS.48.03Keywords:
Additive manufacture, Titanium, Low cycle fatigue, Multiaxial non-proportional loadingAbstract
Experimental tests were conducted on additive manufactured Ti-6Al-4V titanium alloy to investigate the mechanical and crack properties under multiaxial cyclic loading. Selective Laser Sintering technique (SLS) was employed to fabricate four types of cylindrical hollow specimens. The typology of each specimen is defined by the orientation of the layers and by the application of a stress-relieving heat treatment after the production process. Stress-strain cyclic curves of the materials were obtained to investigate the material cyclic plastic behavior, that resulted independent of specimen variety. Strain-controlled multiaxial low cycle fatigue tests under proportional and non-proportional loading paths were carried out on the specimens. Not heat-treated specimens exhibited a higher low cycle fatigue resistance both for proportional and non-proportional loading. Drastic initial softening was detected in the majority of the tests. Additional hardening was detected in part of non-proportional tests, which is atypical for this alloy. The mutual influence of applied load and microstructural characteristics on fatigue life are finally discussed.
Downloads
Downloads
Published
Issue
Section
Categories
License
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.