Crack simulation for the cover of the landfill – A seismic design
DOI:
https://doi.org/10.3221/IGF-ESIS.65.09Keywords:
Landfill, Crack, Rankine’s theory, Phantom Node Method, Displacement, Cover ThicknessAbstract
The stability of the landfill is an environmental issue. The collapse of the landfill causes environmental pollution and influences human life. In the present study, the crack on the cover of the landfill was simulated. Rankine’s theory and the Phantom Node Method were used for the simulation length of the crack and the mechanism of the crack propagation in the nonlinear extended finite element method (NXFEM). Artificial Neural Networks (ANNs) based on Levenberg-Marquardt Algorithm and Abalone Rings Data Set mode were used to predict displacement in critical points of the model. The vibration mechanism of the landfill was changed in each model. During applying seismic load on the model, the optimized thickness of the clay cover on the landfill was discussed. The thickness of the landfill cover controls the seismic response of the landfill. The numerical simulation shows differential displacement of the landfill impacts on the crack propagation and the need for the appropriate design of the cover thickness of the landfill.
Downloads
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2023 Abdoullah Namdar, Mehran Karimpour-Fard, Omer Mughieda, Filippo Berto, Nurmunira Muhammad
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.