On relation between J-integral and heat energy dissipation at the crack tip in stainless steel specimens
DOI:
https://doi.org/10.3221/IGF-ESIS.49.09Keywords:
Fracture Mechanics, Crack tip plasticity, Thermoelastic Stress Analysis, Energy methods, J-integralAbstract
In this paper, an experimental procedure to evaluate the elastic-plastic J-integral at the tip of a fatigue crack is presented. According to this new approach, the elastic component of the J-integral is derived from Thermoelastic Stress Analysis, while the plastic component of the J-integral is derived from the heat energy loss. An analytical link is proposed to apply this new experimental technique. Therefore, the elastic-plastic J-integral range was evaluated starting from infrared temperature maps measured in situ during crack propagation tests of AISI 304L stainless steel specimens. It was found that the range of the infrared thermography-based J-integral correlated well the crack growth data generated in small as well as large scale yielding conditions. Finally, the experimental values of the J-integral were successfully compared with the corresponding numerical values obtained from elastic-plastic finite element analyses.
Downloads
Downloads
Published
Issue
Section
Categories
License
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.