Material choice to optimise the performance index of isogrid structures
DOI:
https://doi.org/10.3221/IGF-ESIS.67.17Keywords:
Carbon fibre, Titanium, Performance index, Finite element analysis, isogridAbstract
Three key qualities should define the structures used in the aviation industry: they should be light, rigid, and strong. These goals can be met by selecting lightweight, high-performance materials like titanium alloy or composites, but careful structural design is also crucial to improve mechanical performance. The structures known as isogrids, which consist of a skin reinforced by a lattice frame, offer an effective way to meet the aforementioned specifications. The structural performances of isogrid-stiffened cylinders composed of various materials were compared in the current work. The structures under investigation were composed of titanium alloy, carbon fibre composite material, or a combination of both. A FEM model was proposed and validated by comparison with experimental results obtained from a composite material structure, and then it was used to simulate the behaviour of all the other structures. While there was some variation in the strength of the parts, it was discovered that the stiffness was almost uniform throughout all of the structures that were examined. But when the weight of the various constructions was taken into account, some very intriguing findings emerged: the composite material-only structure proved to be the most effective because it had the highest specific performances.
Downloads
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2023 Costanzo Bellini, Filippo Berto, Vittorio Di Cocco, Francesco Iacoviello, Larisa Patricia Mocanu
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.