High carbon steel/Inconel 718 bimetallic parts produced via Fused Filament Fabrication and Sintering
DOI:
https://doi.org/10.3221/IGF-ESIS.65.16Keywords:
Additive Manufacturing, Fused Filament Fabrication, bimetallic material, Inconel 718, high carbon steel, microstructure, interdiffusion, defectsAbstract
The possibility of producing high carbon steel/Inconel 718 bimetallic parts via Fused Filament Fabrication and Sintering is explored. Compatibility of the two alloys with particular attention to elements interdiffusion through the interface as well as the effect of the deposition strategy were analyzed. Microstructural features, relative density and parts shrinkage were investigated, as well. Although first-tentative process parameters values were not sufficient to reach an acceptable material densification, a good bonding between Inconel 718 and carbon steel was observed, suggesting the potential to obtain sound bimetallic parts with a great range of material properties. Due to a difference in densification kinetics, sintering temperature was revealed to be the most critical process parameter to optimize to minimize porosity.
Downloads
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2023 Paolo Ferro, Alberto Fabrizi, Franco Bonollo, H.S.A. Elsayed, Filippo Berto, Gianpaolo Savio
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.