Experimental Evaluation of Effects of Steel and Glass Fibers on Engineering Properties of Concrete
Engineering Properties of Concrete
DOI:
https://doi.org/10.3221/IGF-ESIS.54.08Keywords:
Steel fibers, Glass fibers, Compressive strength, Tension strength, Flexural strength, Mechanical properties, Engineering propertiesAbstract
This paper experimentally investigates the effect of steel and glass fibers on the engineering properties of concrete. To achieve this, 0.3%, 0.6%, and 0.9% by volume fraction of steel and glass fibers are added in concrete mixtures with water-to-cement (W/C) ratios 0.35 and 0.45. For each ratio of water to cement, 21 cubic samples for compressive strength tests, 14 cylindrical samples for tension strength tests, and also 14 prismatic samples for three-point flexural strength tests were prepared. The experimental results show that adding 0.3% to 0.9% % steel fibers for concrete increases simultaneously the compressive, tension, and also flexural strengths in comparison with plain concrete. Adding glass fibers only between 0.3% to 0.6% increases the compressive strength. The results reveal that the best range for reinforcing concrete with steel fiber is 0.3% to 0.9 % and glass fiber is 0.3% to 0.6 % by volume fraction of fiber to improve the engineering strengths concrete. As a rule of thumb, the tension and flexural strengths of concrete could be explained as 8% and 13% of the compressive strength, respectively.
Downloads
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2020 Jalal Akbari, Amirhossein Abed
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.