Size effect on the fracture resistance of rough and frictional cracks
DOI:
https://doi.org/10.3221/IGF-ESIS.47.30Keywords:
Interface models, Friction, Roughness, Distributed dislocation technique, Size effectAbstract
Elastic fracture mechanics commonly defines the fracture resistance of brittle materials within an idealised picture of planar and traction free cracks. An efficient approach to describe the interface conditions in real
cracks, such as those occurring in concrete, ceramics or stones, is to include the effect of both roughness and friction by means of a constitutive relationship between opposite points on the interface. In the present paper,
we use a numerical technique, based on the solution of singular integral equations, to derive the near-tip stress field with various interface conditions. Then, the technique is applied to investigate the size effect of the interface roughness, where such an effect is related to the ratio between the characteristic length of the roughness and the nominal length of the crack. It is found that the resulting near-tip stresses can be profoundly influenced by the crack path, particularly for short cracks.
Downloads
Downloads
Published
Issue
Section
Categories
License
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.