Classification of ductile cast iron specimens: a machine learning approach
DOI:
https://doi.org/10.3221/IGF-ESIS.42.25Keywords:
Ductile cast irons, Graphite nodules, Machine learning approachAbstract
In this paper an automatic procedure based on a machine learning approach is proposed to classify ductile cast iron specimens according to the American Society for Testing and Materials guidelines. The mechanical properties of a specimen are strongly influenced by the peculiar morphology of their graphite elements and useful characteristics, the features, are extracted from the specimens’ images; these characteristics examine the shape, the distribution and the size of the graphite particle in the specimen, the nodularity and the nodule count. The principal components analysis are used to provide a more efficient representation of these data. Support vector machines are trained to obtain a classification of the data by yielding sequential binary classification steps. Numerical analysis is performed on a significant number of images providing robust results, also in presence of dust, scratches and measurement noise.
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2017 Fracture and Structural Integrity
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.