Multiaxial fatigue assessment of crankshafts by local stress and critical plane approach
DOI:
https://doi.org/10.3221/IGF-ESIS.38.06Keywords:
Multiaxial fatigue assessment, Local stress concept, Critical plane approach, CrankshaftAbstract
For multiaxially-loaded parts several stress-based fatigue assessment concepts are applicable mostly taking uniaxial test results as basis. These approaches work well in case of proportional loading states, but on contrary, for non-proportional stress conditions, implying a change of the principal stress direction, deviations in the fatigue life estimation may occur. The aim of this study is to evaluate the cyclic multiaxial material behavior experimentally and to proof the applicability of stress-based methods to assess the fatigue strength. The investigated base materials incorporate the commonly applied crankshaft steels 50CrMo4 and 34CrNiMo6 without surface-layer post-treatments. Extensive fatigue tests with small-scale specimens are performed to evaluate the material behavior under cyclic loading. The experiments include basic uniaxial characterizations, such as notch stress sensitivity and effect of loading type, including tests under tension, rotating bending, and torsion loading. Additionally, combined loading tests with proportional and non-proportional situations are presented to reveal the fatigue resistance for multiaxial stress states. Significant loading conditions, such as proportional stress under rotating bending and torsion, and further on, non-proportional effects like phase shifts and varying frequency ratios are presented. The local fatigue strength assessment is performed on the basis of the critical plane approach, whereat the normal and shear stresses are transformed in numerous cutting planes. Equivalent stress hypotheses are applied and compared with the experiments showing that the Huber-Mises-Hencky criterion fits well to the test results in case of proportional rotating bending and torsion loading.
Downloads
Downloads
Published
Issue
Section
Categories
License
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.