Analysis on the growth of different shapes of mineral microcracks in microwave field
DOI:
https://doi.org/10.3221/IGF-ESIS.37.45Keywords:
Microwave heating, Ore crushing and grinding, Mesoscale simulation, Microcrack growth, Energy consumptionAbstract
Microwave heating-assisted ore grinding and crushing can effectively increase the dissociation energy of minerals and decrease energy consumption. Microcrack growth and distribution characteristics inside different shapes of ore particles, which are composed of galena and calcite under microwave irradiation, were analyzed using discrete element method to explore the effects of mineral shapes on microwave-assisted dissociation. Growth laws on the total number of microcracks, numbers of microcracks in galena and calcite, and boundary damage rate against irradiation time under high power and low power were studied. Research results demonstrated that mineral shape mainly affects the quantity of microcracks inside ores but does not their growth law.
Downloads
Downloads
Published
License
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.