New experimental techniques for fracture testing of highly deformable materials
DOI:
https://doi.org/10.3221/IGF-ESIS.35.19Keywords:
Digital Image Correlation, Highly Deformable Materials, Mixed-mode fracture, Mastic, PolylactideAbstract
A new experimental method for measuring strain fields in highly deformable materials has been developed. This technique is based on an in-house developed Digital Image Correlation (DIC) system capable of accurately capturing localized or non-uniform strain distributions. Thanks to the implemented algorithm based on a Semi-Global Matching (SGM) approach, it is possible to constraint the regularity of the displacement field in order to significantly improve the reliability of the evaluated strains, especially in highly deformable materials. Being originally introduced for Digital Surface Modelling from stereo pairs, SGM is conceived for performing a one-dimensional search of displacements between images, but here a novel implementation for 2D displacement solution space is introduced. SGM approach is compared with the previously in-house developed implementation based on a local Least Squares Matching (LSM) approach. A comparison with the open source code Ncorr and with some FEM results is also presented. The investigation using the present DIC method focuses on 2D full-field strain maps of plain and notched specimens under tensile loading made of two different highly deformable materials: hot mix asphalt and thermoplastic composites for 3D-printing applications. In the latter specimens, an elliptical hole is introduced to assess the potentiality of the method in experimentally capturing high strain gradients in mixed-mode fracture situations.
Downloads
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2015 Fracture and Structural Integrity
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.