Investigation of crack propagation in single optical fiber composite with thermal influence by finite element method
DOI:
https://doi.org/10.3221/IGF-ESIS.13.04Abstract
Two parallel comparative ‘Conventional Method and Computer Simulation using ANSYS software’for prediction of crack growth and its behavior in optical fiber are studied and presented in this work.
Corresponding finite element analysis was performed to determine the evolution of stress and strain states. The
method is developed and combined with the modified J-integral theory to deal with this problem. The effects of
crack length, temperature and mechanical forces are investigated by Finite Element Method in the cracked
body. The conditions where the Mode I stress intensity factor motivate fracture occurrence is investigated and
variations of the different cases are discussed. The most deleterious situation is found to be that wherein the
entire model reaches rupture at some stage. The accuracy of the method is investigated through comparison of
numerical results with computerized simulation using commercial ANSYS software.
Downloads
Downloads
Issue
Section
License
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.