Estimation of the crack propagation direction in a mixed-mode geometry via multi-parameter fracture criteria
DOI:
https://doi.org/10.3221/IGF-ESIS.33.04Keywords:
Williams expansionAbstract
The presented work introduces a numerical parametric study on the crack propagation direction under mixed-mode conditions (mode I + II). It is conducted for the geometry of an eccentric asymmetric fourpoint bending of a single edge notched beam specimen; various levels of mode-mixity are ensured by modifications in the crack length and crack eccentricity. The direction of crack propagation is estimated semianalytically using both the maximum tangential stress criterion and the strain energy density criterion (implemented as a procedure within the used finite element computational code) as well as numerically (from verification reasons). Multi-parameter fracture mechanics is employed in the presented work for precise analytical evaluation of the stress field in the cracked specimen. This theory is based on description of the stress and deformation fields in the cracked body by means of their approximation using several initial terms of the Williams power series. Recent studies show that utilization of only first term of the series, which corresponds to the stress intensity factor (SIF), the single controlling parameter for the crack initiation and propagation assessment in brittle materials, is insufficient in many crack problems. It appears also in this study that the higher-order terms of the asymptotic crack-tip field are of great relevance for the conducted analysis, similarly to a number of other fracture phenomena (near-crack-tip stress field approximation, non-linear zone extent estimation, etc.).
Downloads
Downloads
Published
Issue
Section
Categories
License
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.