A micropolar model for the analysis of dispersive waves in chiral mass-in-mass lattices
DOI:
https://doi.org/10.3221/IGF-ESIS.29.01Keywords:
Auxetic materialsAbstract
The possibility of obtaining band gap structures in chiral auxetic lattices is here considered and applied to the case of inertial locally resonant structures. These periodic materials are modelled as beam-lattices made up of a periodic array of rigid rings, each one connected to the others through elastic slender ligaments. To obtain low-frequency stop bands, elastic circular resonating inclusions made up of masses located inside the rings and connected to them through an elastic surrounding interface are considered and modeled. The equations of motion are obtained for an equivalent homogenized micropolar continuum and the overall elastic moduli and the inertia terms are given for both the hexachiral and the tetrachiral lattice. The constitutive equation of the beam lattice given by the Authors [15] are then applied and a system of six equations of motion is obtained. The propagation of plane waves travelling along the direction of the lines connecting the ring centres of the lattice is analysed and the secular equation is derived, from which the dispersive functions may be obtained.
Downloads
Published
Issue
Section
Categories
License
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.