Fracture and Structural Integrity: The Podcast

Stay at the cutting edge of fracture mechanics and structural integrity research with the official podcast of the Fracture and Structural Integrity journal. Join us for insightful interviews with top researchers, in-depth discussions of groundbreaking papers, and explorations of emerging trends in the field.

RSS Spotify YouTube Amazon Music
Cover Descrizione dell'immagine

Experimental calibration of a virtual raster section for high-accuracy FDM simulation in Abaqus

2026-01-02

https://www.fracturae.com/index.php/fis/article/view/5665

This study presents an experimentally calibrated methodology to enhance the predictive accuracy of finite element simulations for Fused Deposition Modeling (FDM) parts in Abaqus by replacing idealized filament geometry with a physically accurate “corrected virtual raster section.” A Box-Behnken Design of Experiments (DoE) across 27 ABS specimens systematically quantifies how key printing parameters, layer thickness, raster width, extrusion temperature, and print speed, influence the true cross-sectional geometry of deposited filaments, as measured via Scanning Electron Microscopy (SEM). These data inform a predictive mathematical model that transforms the conventional circular filament shape into an experimentally grounded oval-rectangular profile, accurately capturing extrusion-induced flattening and lateral spreading. The calibrated virtual section is integrated into a custom Python-based tool that parses G-code toolpaths and sweeps the corrected geometry along deposition trajectories to generate high-fidelity, mesh-ready Abaqus models. The workflow is validated through tensile testing of ASTM D638 specimens printed at 0°, 45°, and 90° raster orientations (n=3 per orientation). Error analysis against the experimental mean demonstrates that the corrected model reduces simulation errors from catastrophic levels in the non-corrected approach (7–92% relative error, 2.5–19 MPa absolute) to engineering-grade precision (0.03–7% relative error, ≤1.3 MPa absolute). This workflow bridges G-code to physical behavior, enabling reliable simulation of FDM anisotropy.

Download
Filetype: MP3 - Size: 1 MB - Duration: 5:17m (320 kbps 44100 Hz)

Powered by Podcast Generator, an open source podcast publishing solution | Theme based on Bootstrap