Stay at the cutting edge of fracture mechanics and structural integrity research with the official podcast of the Fracture and Structural Integrity journal. Join us for insightful interviews with top researchers, in-depth discussions of groundbreaking papers, and explorations of emerging trends in the field.
RSS Spotify YouTube Amazon Music2025-05-11
https://www.fracturae.com/index.php/fis/article/view/5441
This paper presents a dynamic and critical buckling analysis of the presence of a crack of steel-polymer concrete composite beams modelled using a refined quasi 3D beam theory. The beam model is a hollow steel box section filled with a composite concrete material. The presence of the crack is assumed on both inner concrete core and outer steel layer box, incorporating its effects into the mechanical behavior of the beam. The governing equations for the box beam are derived using the Differential Quadrature Finite Element Method (DQFEM) combined with Lagrange’s principle. The study investigates the natural frequencies and critical buckling loads of steel-polymer concrete composite beams under various crack location and crack depth. Validation is performed by comparing the results with numerical methods and experimental results available in the literature, demonstrating high accuracy. The findings of this research provide valuable insights into the dynamic and stability behavior of box-section beam with composite infill, offering practical guidelines for the design of material-based structures in engineering applications.
DownloadPowered by Podcast Generator, an open source podcast publishing solution | Theme based on Bootstrap