Mathematical data processing according to digital image correlation method for polymer composites
DOI:
https://doi.org/10.3221/IGF-ESIS.54.04Keywords:
The method of digital image correlation, Composite material, Scale level, Mathematical parameters of correlation analysis, Structurally heterogeneous materialAbstract
The paper analyses the numerical algorithms for experimental data processing using a contactless video system Vic-3D, designed for three-dimension analysis of displacement and strain fields, and digital image correlation method. The authors considered methodological issues of conducting an experiment using a video system. They suggested recommendations on the choice of parameters of calculation of correlation, the size of subset and step during the analysis of non-homogeneous displacement and strain fields in polymer composite materials through laminated fiberglass composite. The efficient parameters of mathematical data processing are identified according to digital image correlation method on the basis of building fields for one frame on the surface of laminated fiberglass reinforced plastic at various subset values and at fixed step value. The paper shows the impact of step value on the strain fields detail degree. The authors have identified the relation of the chosen parameters of experimental data processing using digital image correlation method with the scaled levels of consideration of composite materials strain processes. To evaluate the strains at various scale levels, the paper uses supplementary video system instruments: “virtual extensometer”, “rectangular area” and “line”. The authors obtained a longitudinal strain profile that allows evaluating the location of strain peak areas on the composite object surface.
Downloads
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2020 Dmitriy Lobanov, Elena Strungar
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.