An analytical beam model for the evaluation of crack tip root rotations and displacements in orthotropic specimens
DOI:
https://doi.org/10.3221/IGF-ESIS.53.29Keywords:
Root rotations, Root displacements, Collinear delamination, Fracture specimens, OrthotropyAbstract
Explicit and simple expressions for root compliance coefficients, which can be used to define root rotations and root displacements at the crack tip cross section of orthotropic cracked beams, are derived under general self-equilibrated loading conditions at the crack tip. The effects of both shear deformations and transverse elasticity are taken into account in order to accurately define displacement fields and energy release rate. The derivation builds on and extends one-dimensional formulations in the literature. The employment of the novel analytical expressions requires the determination of one a priori unknown parameter which describes the effects of the transverse elasticity and is determined through matching of well established 2D results in the literature. The one-dimensional model accurately reproduces crack tip effects in symmetric isotropic and orthotropic specimens; shear deformations are included in the formulation for an accurate derivation of the root displacement coefficients; the accuracy reduces in asymmetric specimens where the matching parameter becomes load dependent.
Downloads
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2020 Ilaria Monetto, Roberta Massabò
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.