A coupled elastoplastic damage model for brittle rocks
elastoplastic damage model for brittle rocks
DOI:
https://doi.org/10.3221/IGF-ESIS.53.35Keywords:
Coupled elastoplastic damage model, Non-associated plastic flow rule, Anisotropic damage behaviors, Brittle RockAbstract
Brittle rock contains an important plastic deformation, which causes microcracks when coupled with stress-induced damage. A new coupled elastoplastic damage model is established in order to discuss the damage behaviors found in brittle rock, based on theoretical analysis and experiments. Micromechanic considerations determine the effective elastic properties of anisotropic damaged geomaterials. An energy-based damage criterion is used to deduce the damage initiation and the damage evolution law of the brittle rocks. Moreover, the non-linear unified strength criterion is modified. It takes anisotropic damage and the effects of intermediate principal stress into account, in order to determine both the yield and plastic potential functions. The non-associated plastic flow rule is utilized. The consistency condition of plastic and damage is applied in the coupled process. The damage evolution rule and the coupled plastic damage of brittle rock are conceived within the framework of irreversible thermodynamics. By comparing the simulations and the experimental data from limestone that was subjected to various loading paths, a strong connection between the numerical simulations and experimental data is therefore obtained. The numerical results show that the new model is able to describe the main features of the mechanical properties observed in brittle rock.
Downloads
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2020 Zheng Li, Yundong Shou, Deping Guo, Filippo Berto
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.