Understanding powder bed fusion additive manufacturing phenomena via numerical simulation
DOI:
https://doi.org/10.3221/IGF-ESIS.53.21Keywords:
Additive manufacturing, Powder bed fusion process, Numerical simulation, Microstructure, Defects, Residual stressAbstract
The increasing interest in additively manufactured metallic parts from industry has issued a formidable challenge to the academic and scientific world that is asked to design new alloys, optimize process parameters and geometry as well as guarantee the reliability of a new generation of load-bearing components.
Unfortunately, understanding the interaction between different phenomena associated to metal-additive manufacturing processes is a very difficult task. In this scenario, numerical modelling emerges as a valid technique to face problems related to the influence of process parameters on metallurgical and mechanical properties of additively manufactured components.
This contribution is aimed at summarizing the most important outcomes about metal-additive manufacturing process obtained via numerical simulation with particular reference to powder bed fusion techniques. The fundamentals of additive manufacturing numerical simulation will be also explained in detail. Thermal, metallurgical as well as mechanical aspects are covered.
Downloads
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2020 Paolo Ferro, Filippo Berto, Luca Romanin
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.