Prediction of the burst pressure for defective pipelines using different semi-empirical models
DOI:
https://doi.org/10.3221/IGF-ESIS.52.12Keywords:
Burst pressure, Metallic pipelines, Remaining strength, Pipeline corrosion, Empirical model, Corroded pipelineAbstract
The main aim of this work is to predict the theoretical burst pressure of defective pipelines using different semi-empirical models and compare them with the results of the hydrostatic tests. A methodology was formulated with accounting for a minimum thickness (weakest section of the pipe) over the length of the pipe to predict the most conservative burst pressure. With a simple analytical expression, a reasonable accuracy and more conservative burst pressure can be obtained for any arbitrary defect shapes. A variation of burst pressure was found between theoretical prediction and hydrostatic burst test results with respect to the different semi-empirical models even for the same corroded defects. Different defect geometry shapes and pipe material conditions are the possible causes for variation in the burst pressure between the semi-empirical models, so a careful selection of these parameters is necessary. The proposed methodology predicted a more conservative burst pressure for all arbitrary defects shapes and can predict reasonably accurate values if it accounts for the axial stress.
Downloads
Downloads
Published
Issue
Section
Categories
License
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.