Influence of material inhomogeneity and non-linear mechanical behavior of the material on delamination in multilayered beams
DOI:
https://doi.org/10.3221/IGF-ESIS.47.37Keywords:
Multilayered beam, Material inhomogeneit, Delamination fracture, Non-linear behaviourAbstract
The delamination fracture in four-point bending beams made of adhesively bonded lengthwise vertical layers is studied assuming that each layer exhibits smooth material inhomogeneity along the width and length of the layer. The study aims at determining the strain energy release rate with applying the Ramberg-Osgood equation for modeling the non-linear mechanical behavior of the material in each layer. Cosine laws are used to describe the continuous variation of the modulus of elasticity in width and length directions of layers. Beams made of an arbitrary number of vertical layers which have individual widths and material properties are considered. Besides, the delamination crack is located arbitrary between layers, i.e. the two crack arms have different widths. The J-integral is applied for verification of the non-linear solution to the strain energy release rate derived in the present paper. The solution is used to investigate the influence of material inhomogeneity in width and length directions of layers, the crack location along the beam width, the non-linear mechanical behavior of the material and the crack length on the delamination fracture behavior. The approach developed is expected to be useful in structural design of multilayered inhomogeneous beams with considering the delamination fracture behavior.
Downloads
Downloads
Published
License
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.