Performance Index of Natural Stones-GFRP Hybrid Structures
DOI:
https://doi.org/10.3221/IGF-ESIS.46.26Keywords:
Natural stones, Glass/epoxy sandwich laminate, 3-point bending test, Structural behavior improvementAbstract
Natural stone is a material that presents durableness over time and high aesthetic characteristic, but it is brittle and its tensile strength is significantly lower than compressive one: these peculiarities must be taken into account for material usage; in fact, for applications requiring high flexural and tensile strength, as thin sections or long spans, the particular mechanical behavior of the natural stone constitutes an issue to be overcome.
A solution to the above mentioned problem is presented in the present paper: a natural stone tile is reinforced by bonding a sandwich structural laminate made of composite materials. In such manner, a double result is obtained: the mechanical strength increment and the and the tile specific weight decrement. In particular, two different types of sandwich structures, made of glass/epoxy laminates and honeycomb or foam core, were bonded to the lower surfaces of marble and granite tiles; then, 3-point bending tests were carried out on specimens extracted from the produced hybrid tiles. A performance index, considering both strength and weight of tiles, was introduced and the comparison with specimens extracted from traditional unreinforced tiles demonstrated that the considered reinforcement increases the structural characteristics of stone tiles up to an order of magnitude.
Downloads
Downloads
Published
Issue
Section
Categories
License
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.