The discontinuous solutions of Lame’s equations for a conical defect
DOI:
https://doi.org/10.3221/IGF-ESIS.45.16Keywords:
Conical defect, Helmholtz’s equation, Wave potential, Integral Transformation, Lame’s equationsAbstract
In this article the discontinuous solutions of Lame’s equations are constructed for the case of a conical defect. Under a defect one considers a part of a surface (mathematical cut on the surface) when passing through which function and its normal derivative have discontinuities of continuity of the first kind. A discontinuous solution of a certain differential equation in the partial derivatives is a solution that satisfies this equation throughout the region of determining an unknown function, with the exception of the defect points. To construct such a solution the method of integral transformations is used with a generalized scheme. Here this approach is applied to construct the discontinuous solution of Helmholtz’s equation for a conical defect. On the base of it the discontinuous solutions of Lame’s equations are derived for a case of steady state loading of a medium.
Downloads
Downloads
Published
Issue
Section
Categories
License
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.