Static and modal numerical analyses for the roof structure of a railway freight refrigerated car
DOI:
https://doi.org/10.3221/IGF-ESIS.33.50Keywords:
Railway freight carAbstract
Numerical analyses by finite element method and experimental tests are used to determine static and dynamic behaviour of railway vehicles. Experimental measurements are very time consuming and expensive, so they cannot be used at all stages of design. Numerical simulations do not have the disadvantages of experimental methods, but it is necessary to verify them by experiments to obtain realistic results. Fullwidth/full-length, half-width/full-length and half-width/half-length modeling approaches can be used to determine static and vibrational behaviours of railway vehicles depending or not on the symmetry of roof structure and applied load. Different static loading cases defined in standards such as EN 12663, UIC CODE OR 577 and ERRI B12/RP17 have to be considered in FE analyses. Evaluation of stress states, buckling and vibrational behaviours for a roof structure of a railway freight refrigerated car are presented. To highlight the vibrational behaviour of the structure normal mode (free vibration) analyses are performed. As a result of the relevant simulations, structural characteristics and structural weaknesses of the design are determined
Downloads
Downloads
Published
Issue
Section
Categories
License
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.