Damage localization and rupture with gradient damage models
DOI:
https://doi.org/10.3221/IGF-ESIS.19.01Abstract
We propose a method of construction of non homogeneous solutions to the problem of traction ofa bar made of an elastic-damaging material whose softening behavior is regularized by a gradient damage model.We show that, for sufficiently long bars, localization arises on sets whose length is proportional to the materialinternal length and with a profile which is also characteristic of the material. The rupture of the bar occurs at thecenter of the localization zone when the damage reaches there the critical value corresponding to the loss ofrigidity of the material. The dissipated energy during all the damage process up to rupture is a quantity c G whichcan be expressed in terms of the material parameters. Accordingly, c G can be considered as the usual surfaceenergy density appearing in the Griffith theory of brittle fracture. All these theoretical considerations areillustrated by numerical examples.Downloads
Downloads
Published
Issue
Section
License
Copyright
Authors are allowed to retain both the copyright and the publishing rights of their articles without restrictions.
Open Access Statement
Frattura ed Integrità Strutturale (Fracture and Structural Integrity, F&SI) is an open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the DOAI definition of open access.
F&SI operates under the Creative Commons Licence Attribution 4.0 International (CC-BY 4.0). This allows to copy and redistribute the material in any medium or format, to remix, transform and build upon the material for any purpose, even commercially, but giving appropriate credit and providing a link to the license and indicating if changes were made.