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INTRODUCTION  
 

nfrared (IR) thermography is a method of non-destructive testing (NDT) based on the analysis of thermal patterns on 
the surface of objects under test by using thermal imagers [1]. Thermal stimulation of objects and subsequent analysis 
of temperature distributions allow detecting structural defects and thermal anomalies in various materials. Due to its 

simplicity, non-contact nature of testing and capacity to swiftly assess large areas, IR thermographic NDT has become 
I 
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widespread in the aerospace industry [2, 3], power production and civil engineering [4–6], including evaluation of  composite 
materials (carbon and glass fiber plastics) [7]. However, IR thermography possesses some drawbacks, such as a diffusive 
nature of heat conduction, sensitivity to environmental conditions, need for properly-trained operators, etc. 
Flash thermography (FT) involves the use of powerful heat sources (e.g. flash tubes and lasers) generating short optical 
pulses which can be considered as Dirac pulses [8]. Due to short observation times, flash thermography provides high-
resolution thermal images facilitating the detection of small-size defects in materials and structures. 
The integration of automation and machine learning into IR thermography has significantly expanded potentials of this 
technique [9–11].  In 2016, Khodayar et al. outlined the use of artificial intelligence as the “2050-horizon” in IR 
thermographic NDT [12]. The state-of-the-art and recent improvements in Convolutional Neural Networks (CNN) was 
presented in 2018 by Jiuxiang Gu et al. [13]. In the recent review paper, Yunze He et al. stated that the rapid development 
of deep learning  makes IR machine vision and IR thermographic NDT more intelligent thus contributing to broadening 
applications of these techniques [14]. 
In active IR thermographic NDT of materials, the principles of deep learning can be helpful in solving inverse heat 
conduction problems, i.e. performing defect characterization of hidden defects that is a permanent challenge in thermal 
NDT (TNDT). For example, Yousefi et al. showed that CNNs can serve as an unsupervised extractor of defect features in 
IR NDT [15]. Haiyi Wu et al. proposed the deep learning model based on CNNs with a U-shape architecture to predict the 
heterogeneous distribution of circle-shaped fillers in composites [16]. In pulsed TNDT, a couple of different CNNs were 
investigated by Qiang Fang et al. with experiments being fulfilled on a series of academic test samples with bottom hole 
defects and Teflon inserts [17]. The same team used a finite-element model to calculate defect responses in carbon fiber 
reinforced polymer (CFRP) to be further used for determining defect depth by means of a new technique, which employed 
the so-called Gated Recurrent Units [18]. 
To summarize the above-mentioned, one may state that machine learning algorithms, being trained on appropriate datasets, 
can autonomously analyze IR thermographic data, enhance defect detection and make trust-worthy decisions. However, a 
problem of generalizability remains one of the most challenging while using artificial intelligence approaches. The respective 
neural network models often prove their efficiency only under specific conditions, i.e. if they are trained on particular training 
setups and sample datasets [19, 20]. 
This study was motivated by the fact that the machine learning models trained on datasets with fixed parameters yield limited 
defect detection and characterization capabilities. The results obtained provide a useful scientific contribution to the field 
of defect detection using IR data and machine learning. First, it presents a comprehensive evaluation of the generalizability 
of machine learning models trained on datasets with varying degrees of parameter variability. By systematically manipulating 
numerical model parameters, such as defect depth, material thermal conductivity and sample thickness, this study provides 
a detailed understanding of how these factors influence model performance. This approach offers valuable insights into the 
optimal design of training datasets, highlighting the need for a balanced data variability to enhance model robustness without 
compromising accuracy. Secondly, the introduction of multiple test datasets, each with distinct unseen parameter variations, 
represents a novel methodology for assessing model generalizability. This rigorous testing framework goes beyond 
conventional validation approaches by simulating real-world scenarios where defects and material properties may differ 
significantly from those used in training. This aspect of the study demonstrates the practical applicability of the proposed 
machine learning models, showcasing their potential to reliably detect defects in diverse and unpredictable environments. 
The outline of the paper is as follows. First, the theory of FT and basic processing approaches will shortly be introduced. 
Next, a couple of training datasets used for machine learning will be developed by means of advanced 3D numerical 
modeling.  Then, these datasets will be used for evaluating efficiency of a particular Gaussian Support Vector Machine 
(SVM) model in characterizing defect parameters. The robustness of the suggested learning machine model toward noise 
of an additive and multiplicative nature will be explored. Finally, some data processing algorithms will be analyzed to 
demonstrate that the use of Thermographic Signal Reconstruction (TSR) and Temperature Contrast significantly improve 
the model efficiency. 
 
 
THEORY 
 

T is based on applying a brief heat pulse onto a material under examination followed by measurement of material 
temperature response by means of an IR camera [21]. Typically, such heat pulses last only few milliseconds, and the 
analysis focuses solely on the material thermal response following the pulse, i.e. at the cooling stage of the thermal 

process. The time-temperature responses at sample surface points are then subjected to processing in order to extract 
meaningful information on subsurface defects. 
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Classical heat conduction solutions were exhaustively summarized by Carslaw and Jaeger [22]. The solutions for pulsed, 
continuous or harmonic heating of an adiabatic semi-infinite body and slab are often used. For example, the surface response 
of a semi-infinite body toward Dirac-pulse heating is given by a simple formula [23]: 
 

( ) 1 1

o

T t

Q CKt e t 
           (1) 

 
where ( )T t  represents the temperature on the sample surface at the time t , oQ  stands for the energy of the heat pulse, 
while , ,C K and e  denote the material density, specific heat capacity,  thermal conductivity and thermal effusivity 

( e CK ), respectively. 

A region containing a delamination-like defect may be considered as a slab of the thickness d . The pulse response of a slab 
can be expressed as [24]: 
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where   is the thermal diffusivity, R is the thermal reflection coefficient describing the effusivity contrast between two 
materials at the defect boundary, and n is a summation index. The temperature contrast between defect and non-defect 
areas can be obtained by subtracting Eq. (1) from Eq. (2): 
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Nonetheless, practical procedures of TNDT are often aggravated by significant noise/clutter, non-uniform heating, 
variations in material thermal properties and other complexities. Consequently, the applicability of robust but simple 
analytical methods may be limited in practical TNDT problems. 
 
Thermographic data processing techniques 
In TNDT, similarly to many other inspection techniques, the data analysis focuses on evaluating various forms of signal 
contrasts [25]. These contrasts underline difference between signals in defect and defect-free areas. TNDT employs some 
definitions of contrasts used as figures of merit, including but not limited to absolute contrast (AC), running and normalized 
contrasts (NC). 
Absolute thermal contrast involves calculating the temperature difference between defect (d) and non-defect (nd) areas. 
However, a significant limitation of both AC and NC is the necessity to identify a non-defect, or sound, area. This 
requirement poses a challenge in data processing, in particular, when locations of defects are not a priori known.  
In [26], an automated method for identifying a reference zone was introduced being based on the determination of a minimal 

value of the integral involving the T t function. Since a reference (non-defect) area is determined, the dimensionless 
running contrast can be obtained as follows: 
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The Pulse Phase Thermography (PPT) technique, initially proposed by Maldague and Marinetti [27], combines advantages 
of pulsed and thermal wave TNDT. In fact, any form of thermal stimulation, be it a flash or pulse of a certain duration, can 
be represented as a combination of harmonic thermal waves, therefore, it is fruitful to examine the propagation of individual 
waves within a solid material and their interaction with structural inhomogeneities, or defects. 
The process involves monitoring the surface temperature with an IR camera after the heat pulse was delivered onto sample 
surface. Subsequently, the discrete Fourier transform is applied to the ( )T t data, resulting in calculation of signal phases as 
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a function of frequency ( )f . The detection of subsurface defects is based on observing the phase difference  between 
defect and non-defect areas that are identified in phase images (phasegrams). 
TSR is a well-established method proposed by Shepard for processing pixel-based temperature evolutions [28, 29]. The 
technique is based on the polynomial fitting of experimental temperature data in the Log-Log scale. The fitting procedure 
effectively replaces a raw set of temperature data with a series representing polynomial coefficients. Such approach facilitates 
reconstruction of initial thermographic data to effectively discriminate defect and non-defect areas. Subsequently, the first 
and second derivatives of logarithmic temperature are analyzed thus contributing to enhancing the signal-to-noise ratio and 
producing sharp images of subsurface defects. Also, the derivative analysis is efficient in characterizing defect depth. 
 
Machine learning 
Machine learning techniques have gained popularity in IR thermography due to their ability to automatically learn and adapt 
from data. They can enhance defect detection by recognizing subtle patterns, extracting features and making decisions based 
on a learned knowledge [30]. 
In supervised learning, machine learning models are trained on labeled datasets containing examples of both defect and 
non-defect thermographic data. These models learn to distinguish between the two input classes enabling them to identify 
defects in new, unlabeled data. 
Machine learning models can be applied to defect detection as classification tasks (e.g., identifying whether an image contains 
a defect) or regression tasks (e.g., estimating the size or depth of defects). 
In this study, the emphasis is made on the binary classification task and pixel-by-pixel analysis of temperature evolutions 
that allows classification of points in thermographic images as belonging to either defect or non-defect areas.  
Some relatively simple models, such as SVM and Bagged Trees, were chosen to focus on how the variability in the training 
datasets influences the model performance. By using these models, it became possible to systematically analyze the impact 
of dataset variability on defect detection accuracy without the added complexity of more advanced and computationally-
intensive algorithms. It is worth mentioning that these models have also demonstrated good performance in IR 
thermography applications in plentiful previous studies [31, 32, 33]. 
The SVM model has been chosen because it has demonstrated a good performance in defect classification when processing 
raw temperature data. Its theoretical foundation is rooted in the concept of finding an optimal hyperplane in a high-
dimensional feature space to best separate data points belonging to different classes [34]. The SVM concept is to identify a 
hyperplane that maximizes the margin, which represents the distance between the hyperplane and the nearest data points 
(called support vectors) from each class. This margin maximization not only leads to a better generalization but also 
improves the model robustness toward outliers. 
SVMs are powerful machine learning models that excel in finding optimal decision boundaries for both linearly and non-
linearly separable data. They are widely used in various applications including image and text classification, anomaly 
detection, etc., thanks to their robust theoretical foundation and versatility. 
Ensemble machine learning models aggregate predictions from multiple base models to create a final prediction. The Bagged 
Trees ensemble method involves training multiple decision trees on different subsets of training data and combining their 
predictions. This approach significantly reduces overfitting, a common challenge in machine learning, especially when 
dealing with varied and noisy data. Bagged Trees have shown effectiveness in numerous studies, providing robust and 
reliable results across different applications. 
By choosing the models above, this study aimed to ensure transparency and interpretability in analyzing the crucial role of 
dataset composition in machine learning-based defect detection systems. The focus on dataset variability is essential for 
understanding and improving generalizability and accuracy of defect detection methods. 
 
 
NUMERICAL SIMULATION 
 

n this study, the viability of training defect detection models by using IR thermographic data derived from numerical 
simulations will be assessed. The accent is made on a thorough examination of the impact of model parameters and 
dataset size on the performance of the models, which are applied to previously unobserved data. To achieve this 

objective, some multiple sets of training and testing datasets, each characterized by different model parameters, were 
generated. These models were designed by using the ThermoCalc-3D software, a specialized tool developed by Tomsk 
Polytechnic University for simulating heat transfer processes in solid materials with defects by using the finite difference 
method. 
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The numerical simulation of 3D heat conduction problems yields temporal evolutions at all surface points of a solid body 
subjected to uniform or uneven heating. The model used represents a rectangular plate containing air-filled parallelepiped-
like defects. A visual presentation of the model is shown in Fig. 1. The example of calculated temperature distributions is 
given in Fig. 2.  
 

 
 

Figure 1 : TNDT 3D numerical model. 
 
The general mathematical formulation of the 3D model of non-adiabatic heat conduction in a multilayer body with defects 
accepted in ThermoCalc-3D is as follows (Fig. 1):  
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Here: iT  is the temperature in the i-th region counted from the initial object temperature ( i =1-36 corresponds to 36 

specimen layers, i =37-76 corresponds to 40 defects); inT  is the specimen initial temperature; ,j jq q
i iK  are the thermal 

diffusivity and the thermal conductivity in the i-th region by the coordinate jq ; , ,x y z  are the Cartesian coordinates; jq  is 

one of the Cartesian coordinates ,x y  or z ( j =1-3);  is the time; ( , , )Q x y   is the power density of the absorbed heat 

flux that, in a general case, varies in both time and space; ,F Rh h  are the heat exchange coefficients on a front and rear 

surface respectively; these coefficients combine  both the radiation and convection phenomenon;  m  is the number of layers 
( m =36), ambT  is the ambient temperature; , ,x y zL L L  are the specimen dimensions. 

Eqn. (5) is the 3D parabolic equation of heat conduction; Eqn. (6) is the initial condition; Eqn. (7) is the boundary condition 
on a front surface (heating and cooling); Eqn. (8) is the boundary condition on a rear surface (cooling only); Eqns. (9) are 
the adiabatic conditions on side surfaces by the coordinates x and y; Eqns. (10) are the temperature and heat flux continuity 
conditions on the boundaries between layers and between layers and defects. 
Note that the ThermoCalc-3D allows modeling a 36-layer plate containing up to 40 parallelepiped-like defects. In this study, 
a classical 1-layer plate with 4 defects was modeled, see Fig. 1. By using a numerical grid including up to several million 
nodes, ThermoCalc-3D ensures accuracy of calculating non-defect temperatures under 0.5% and defect temperatures under 
3% compared to known 1D analytical solutions. 
The following model parameters were chosen: plate lateral size 50 x 50 mm, number of numerical grid steps by X, Y, Z – 
axes 50 x 50 x 100, lateral size of defects 10 x 10 mm; defect thermal properties (air): k = 0.07 W.m-1.K-1,  = 1.3 kg.m-3, 

C = 928.4 J.kg-1.K-1,  heat time 0.02 s (square pulse), time step 0.02 s, number of collected frames 250, ambient and initial 
temperature 0°C, and spatial distribution of the heat pulse is Gaussian:  
 

2 2(x x) (y y)x o y o

oQ Q e
               (11) 

 
where ,x y  - coefficients of spatial distribution of heat pulse, m-2, o ox y  25 mm -  coordinates of heat source center 

(sample center). 
Some model parameters presented in Tab. 1 varied to produce different datasets.  
The Train 1-6 datasets include changeable model parameters, such as material thermal properties, specimen thickness and 
heating power. Although not all combinations of the parameters were calculated, the total number of datasets used for 
training reached 63.  
The first training dataset (Train 1) represented a particular numerical model with thermal properties corresponding to those 
of CFRP. Train 2 incorporated variations in heat pulse energy and spatial distribution. In the Train 3 dataset, sample 
thickness, heat pulse power and spatial distribution varied. As mentioned above, not all combinations of input data were 
calculated but each parameter value occurred at least once. For instance, for a sample thickness of 1 mm, the heat power 
was set at 200,000 W/m², and the spatial distribution coefficients were 50 m-2. Train 4 introduced variations in thermal 
conductivity, heat power and spatial distribution, while in the Train 5 dataset, there were three combinations of sample 
thickness, two combinations of heat capacity and density, as well as variations in thermal conductivity, heat power and 
spatial distribution. The Train 6 dataset was the most comprehensive including wide-range variations in sample thickness, 
thermal properties and heat power. 
Furthermore, in order to evaluate the training datasets, three additional datasets of varying complexity were calculated. Test 
1 represented the simplest variant comprising a 1 mm-thick plate (similar to the training models) but with slight differences 
in thermal conductivity, defect depth and heat power, to compare to the first training dataset. The second Test 2 dataset 
differed from the respective training model by defect depth and material thermal properties that corresponded to 1 mm-
thick glass fiber and polyamide composites. The Test 3 dataset was most complex additionally including varying material 
thickness. 
Each pixel of the calculated IR images was categorized as related to either defect or defect-free area. The obtained 3D IR 
thermographic sequences were then transformed into 2D matrices of feature vectors for model training and testing 
purposes. Each feature vector encapsulated the temperature evolution of an individual pixel. Fig. 2 represents the examples 
of the simulated thermograms for the Train 1 model.  
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Dataset 
Sample 

thickness, 
mm 

Density, kg.m-3, and 
heat capacity,  

J.kg-1.K-1 

Conductivity in Z-
direction, W.m-1.K-

1 

Defect 
depth, mm 

Defect 
thickness, 

mm 

Heat pulse 
spatial 

distribution 

,x y  , m-2 

Maximum 
heat pulse 

density, W.m-

2 

Train 1 1 500, 2462 0.64 

0.2 
0.4 
0.6 
0.7 

0.05 100, 50 200 000 

Train 2 1 500, 2462 0.64 

0.2 
0.4 
0.6 
0.7 

0.05 50, 50 
100, 100 

150 000 
200 000 
250 000 
300 000 
350 000 
400 000 

Train 3 

1 
2 
3 
4 
5 
10 
15 

500, 2462 0.64 

0.2 
0.4 
0.6 
0.7 

0.05 50, 50 
100, 100 

150 000 
200 000 
250 000 
300 000 
350 000 
400 000 

Train 4 1 500, 2462 

0.1 
0.3 
0.5 
0.7 
0.9 
1.1 

0.2 
0.4 
0.6 
0.7 

0.05 
50, 50 

100, 100 

150 000 
200 000 
250 000 
300 000 
350 000 
400 000 

Train 5 
1 
3 
5 

500, 2462 
2100, 800 

 

0.1 
0.3 
0.5 
0.7 
0.9 

0.2 
0.4 
0.6 
0.7 

0.05 
0.1 

50, 50 
100, 100 

150 000 
200 000 
250 000 
300 000 
350 000 
400 000 

Train 6 
 

1 
3 
5 
7 
10 
 

500, 2462 
800, 2100 
800, 3000 
900, 4000 

 

0.1 
0.3 
0.5 
0.9 
1.2 
1.5 

0.2 
0.4 
0.6 
0.7 

0.05 
0.1 

50, 50 
100, 100 

150 000 
200 000 
250 000 
300 000 
350 000 
400 000 

Test 1 1 500, 2462 

0.65 
0.15  
0.35  
0.55 

0.05 70, 70 280 000 

0.8 
0.25  
0.45  
0.65 

0.05 70, 70 270 000 

Test 2 

1 1240, 1800 0.13 
0.15  
0.35  
0.55 

0.1 70, 70 270 000 

1 1900, 1200 0.3 
0.15  
0.35  
0.55 

0.05 70, 70 230 000 

Test 3 

5 1240, 1800 0.13 
0.15 
0.35 
0.55 

0.1 70, 70 270 000 

3 1900, 1200 0.13 
0.2 
0.4 
0.6 

0.1 70, 70 290 000 

1.5 1240, 1800 0.2 
0.1 
0.3 
0.5 

0.1 70, 70 290 000 

2 1900, 1200 0.3 
0.2 
0.4 
0.6 

0.1 70, 70 290 000 

Table 1: Numerical model parameters. 
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                                                      a)                                                                         b) 

   
                                                      c)                                                                         d) 

 
Figure 2: Simulated thermograms (Train 1 dataset) at times 0.3 s (a), 0.7 s (b), 1.5 s (c) and 5 s after heating. 

 
The temperature evolutions at defect and non-defect points are presented in Fig. 3 in the Log-Log scale. The blue curves 
represent temperature evolutions over the defect centers. The red curves represent non-defect temperature evolutions at 
the corner points, in the middle of the sample and between the defects. 
 

 
 

Figure 3: Modelled temperature evolutions at defect (blue) and non-defect (red) points (Log T vs. Log t ). 
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EVALUATION OF DATASETS AND MODELS PERFORMANCE 
 

 Gaussian SVM and Bagged Trees models were trained using the six datasets (Train 1-6), and their performance 
was assessed by using the validation data and three distinct test datasets (Test 1-3). 
The validation data was used to evaluate the model at the training phase. This data was not used in the very training 

process, but it helped to tune hyperparameters and prevent overfitting. The models were trained by a 5-folds cross-validation 
scheme. This means that each train dataset was randomly divided into 5 subsets of approximately equal size. Each subset 
represented a fold. The model was trained and evaluated 5 times, each time using a different fold as the validation set and 
the remaining 4 folds served as the training set.  After having performed training on the training set, the model performance 
was evaluated on the validation set (the remaining fold) to estimate how well it responded to unseen data.  
Finally, the performance metrics (True Positive Rate-TPR and True Negative Rate-TNR) obtained from 5 iterations (5 
validation sets) were averaged to provide an overall assessment of the model performance. Then models were trained on all 
train datasets and evaluated by test datasets. 
To summarize, the validation data was used during the training phase to adjust model parameters or hyperparameters and 
also prevent overfitting. This can indirectly influence the performance of the model, while the test data provided an 
independent evaluation of the final model performance on new, unseen data. 
The performance of two machine learning models, namely, SVM and Bagged Trees Ensemble, was evaluated by analyzing 
different training and testing datasets. The used evaluation metrics included Sensitivity (True Positive Rate, TPR), Specificity 
(True Negative Rate, TNR), and Precision (Positive Predictive Value, PPV). These metrics were chosen to give a 
comprehensive understanding of the model performance in detecting defects. The results are presented in Tabs. 2 and 3, 
illustrating the model performance across various datasets.  Since in many cases the TPR was small, some models classified 
all data as corresponding to defects, leading to TPR and TNR values of 100 and 0, respectively. In these cases, the tables 
indicate zero values, thus indicating that the model is not appropriate. 
It is important to note that Accuracy is not a representative metric in this context because it does not account for the 
imbalance between defect and defect-free cases. Instead, the metrics like TPR, TNR, and Precision (PPV) provide a clearer 
picture of model performance in detecting defects. 

 
 Sensitivity (TPR)/ Specificity (TNR)/Precision (PPV) %  

Dataset Train 1 Train 2 Train 3 Train 4 Train 5 Train 6 

Validation 99.8/100/99.9 78.4/99.9/93.2 45.9/100/84.5 96.4/100/99.1 87.2/100/96.9 69/99.2/92.7 

Test 1 100/0/100* 98/99.5/99.3 87.3/99.7/95.9 0/100/79.7 86.6/100/95.6 62.5/100/88.7 

Test 2 100/0/100 100/0/100 100/33.9/100 0/100/79.7 82.5/99.6/95.7 96.5/97.1/99.1 

Test 3 100/0/100 100/0/100 100/0/100 0/100/79.7 75.9/90/91.7 84/80.3/93.6 

 

Table 2: SVM Model performance for different datasets. 
 

 Sensitivity (TPR)/ Specificity (TNR)/Precision (PPV) %  

Dataset Train 1 Train 2 Train 3 Train 4 Train 5 Train 6 

Validation 99.5/99.8/99.8 98.9/99.9/99.6 99/99.8/99.6 99.8/100/99.9 99.4/100/99.9 96.9/99.4/99.2 

Test 1 100/0/100 26.5/68.8/73.2 30.4/67.2/74 0/100/79.7 55.6/52.5/77.7 37/57.1/72.8 

Test 2 100/1.6/100 100/0/100 100/0/100 0/100/79.7 50/57.9/82 100/6.4/100 

Test 3 100/0/100 100/0/100 100/0/100 0/100/79.7 82.6/40.9/87.4 87.7/40/90.5 

 
Table 3: Bagged Trees Ensemble model performance for different datasets. 

 
The tables allow evaluating model performance by using different training datasets. The model trained on the results of the 
single simulation with the fixed parameters (Train 1) failed on all test datasets.  
The introduction of heat power variations in the model yielded the best results for the Test 1 dataset with slight differences 
in the parameters, but it failed to identify defects in more complex cases (Test 2 and 3). 
Surprisingly, introducing variations in plate thickness (Train 3) from 1 to 15 mm produced an adverse effect, causing the 
model to perform worse even on the validation dataset. 
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Similarly, the introduction of variations in thermal conductivity (Train 4) did not improve model performance not only on 
Test 1 dataset 1 but also failed to identify defects in Test 2 and 3 datasets. This shows that varying only thermal conductivity 
is not sufficient to generalize the model onto different materials, see Train 2. 
The most promising results were achieved by training the model on the Train 5 dataset, which included slight variations in 
sample thickness (from 1 to 5 mm) and thermal conductivity (from 0.2 to 0.7 W.m-1.K-1). Additionally, it introduced the 
combination of density and heat capacity not present in the test data. This model effectively identified most of defects across 
all test datasets. 
However, the use of the training dataset with a greater variability in model parameters (Train 6) resulted in a worse 
performance for validation and Test 1 datasets. 
Tab. 2 demonstrates that increasing the size and variation of the training data can negatively affect the results obtained on 
both the validation data and the data not very different from the training one (Test 1).  
The Bagged Trees Ensemble model shows poor performance for Test 1, Test 2 and Test 3 with Train 1, Train 2, and Train 
3, reflecting a high false positive rate (Specificity at 0% in most cases). The model performs better with Train 5 and Train 6 
indicating that less variability in training data improves the generalizability. 
The SVM model struggles with overfitting when trained on highly variable datasets, as evidenced by the poor Specificity in 
certain test cases. 
The Bagged Trees Ensemble model, while showing robust validation performance, also encounters the problem of 
overfitting, especially with training datasets of high variability. 
Both models benefit from training datasets with controlled variability (Train 5 and Train 6) thus enhancing their 
generalization ability in respect to unseen test data. 
The performance generally improves with the variability of numerical model parameters in training sets 1 through 5. 
However, the performance decreases with too much variability, as shown by Train 6. This demonstrates the need to find an 
optimal balance in training data variability to achieve the best model performance. 
To conclude, the proposed machine learning models has proven to be efficient in the case of varying heat power and spatial 
distribution when applied to materials with similar thermal properties and thickness. Nevertheless, to enhance the model 
generalizability by involving different materials and thicknesses, training data parameters are carefully to be chosen. For 
example, excessive variability in the training data may compromise model performance producing worse evaluation results 
and failing to improve overall generalizability. 
  
Learning curve evaluation 
In this section, a comprehensive evaluation of the SVM machine learning model performance is presented through the 
analysis of learning curves. Learning curves are crucial diagnostic tools, which illustrate the model learning process by 
plotting the training and validation errors against different training set sizes. Learning curves provide valuable insights into 
the model performance and behavior during training. They help to understand how well the model is being learned from 
the data and whether it generalizes well to new, unseen data. Even with different training and testing datasets aimed at 
evaluating generalizability, learning curves can still offer meaningful information. The particular learning curves have been 
constructed using two distinct training datasets: one with a higher variability in properties and parameters (Train 6) and 
another with a lower variability (Train 5), see Fig. 4.  This comparison between the two training datasets highlights the 
impact of dataset variability on the model performance thus illustrating the differences between a sufficiently comprehensive 
dataset and one that might be an overly variable. 
It is important stressing that a training curve shows how the model performance evolves on the training data as the number 
of training examples increases. In its turn, the validation curve shows how the model performance evolves on the validation 
or test data. If the training accuracy is high but the validation accuracy is low, the model is likely overfitting. If both the 
training and validation accuracies are low, the model is likely underfitting. 
While considering training error curves, in the case of the lower variability dataset (Train 5), the training error starts as high 
as 21.97% but then drops sharply to 2.23%. This suggests that the model learns more quickly when the variability in the 
training data is lower. In the case of the higher variability dataset (Train 6), the training error decreases steadily from 18.06% 
to 5.98%, showing a gradual improvement as more data is used for training. 
Validation error curves were first evaluated on Test 1 set. In the case of the lower variability, the validation error starts at 
25.33% but shows a significant drop to 3.21% with some fluctuations. It suggests the better performance on this dataset, 
especially with higher training sizes. In the case of the higher variability, the validation error decreases from 25.33% to 
9.50% showing good generalizability to this set. 
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The results obtained on the Test 2 set show that, in the case of the Lower Variability, the validation error starts at 20.28% 
and decreases to 3.55% with slight fluctuations. The model performs well but not as consistently as with the higher variability 
data. 
 

        
a)                b) 

 
Figure 4: Learning curves for Gaussian SVM model trained on Train 5 (a) and Train 6 (b) datasets. 

 
While considering the higher variability of the data, the validation error decreases from 20.28% to 2.84% indicating good 
generalization to different thermal properties and defect depths. 
Finally, the Test 3 set was evaluated to reveal that, in the case of the lower variability, the validation error starts at 25.33% 
and diminishes to around 13.55% with a better consistency than in the case of the higher variability data but still showing 
significant fluctuations. If the data is characterized by the higher variability, the validation error fluctuates between 13.92% 
and 20.23% thus showing that the model struggles with the diverse conditions in this dataset. 
The analysis of model performance shows that the model trained on the lower variability dataset shows the steeper decrease 
in the training error, indicating faster learning. The validation errors for the lower variability datasets are generally lower, 
suggesting the better performance and generalizability. 
Considering generalizability leads to the following conclusions. The model trained on the higher variability dataset performs 
well on the Test 1 and 2 sets but struggles with the diverse conditions in the Test 3 set. The model trained on the lower 
variability dataset performs better on all three validation sets with errors being lower and more consistent. Training with 
lower variability data may help the model to learn more quickly and perform better on similar validation sets. 
For datasets with higher variability, more sophisticated models or additional training data may be required to improve 
generalizability. 
Overall, the model trained on the lower variability dataset shows better performance and generalizability indicating that 
reducing variability in training data may lead to more robust models. 
 
Assessing Robustness to Noise 
Tab. 4 demonstrates the resistance of the model toward noise of two types. Additive and multiplicative Gaussian-type noise 
with varying standard deviations (STD) was introduced into the Test 2 dataset, and the performance of the optimal model 
(trained on the Train 5 dataset) was subsequently evaluated. It is worth reminding that additive noise is conditioned by 
background thermal reflections and ultimately represents a random noise of an IR detector; in the most IR imagers this kind 
of noise can be assumed 0.01-0.1oC. Additive noise is added to temperature evolutions recorded in TNDT tests. In its turn, 
multiplicative noise is mainly determined by material surface clutter, such as natural inhomogeneities in absorptivity/ 
emissivity, and it is proportional to the sample excess temperature; the minimum amplitude of multiplicative noise is about 
2-4% for black body-like materials [23]. 
For additive noise with a standard deviation of up to 0.2oC and multiplicative noise up to 2%, the model quality metrics 
have demonstrated only marginal reductions. With the additive noise increased to 0.7oC, the True Positive Rate (TPR) has 
revealed a minor decline, while the Negative Predictive Value (NPV) has demonstrated a more significant reduction thus 
indicating an increase in false positive indications. It is interesting that the introduction of the additive noise with STD=1oC 
has resulted in the slightly higher TPR but significantly diminished the NPV down to 49.3%. This can be explained by the 
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complicated combinations of defect and noise signals, which may appear in some particular cases. It seems that, with noise 
added, some “defect” pixels not found in the raw data may be correctly identified. Respectively, the TPR may grow up, but 
the number of false positive indications also increases. The results in Tab. 4 show that additive noise has corrupted the 
model performance more than multiplicative noise. This can probably be explained by relatively low amplitudes of the 
multiplicative noise (not higher than 4%).  
 

STD of 
additive noise, 

°C 

STD of 
multiplicative 

noise, % 

Sensitivity (TPR), 
% 

Specificity 
(TNR), % 

Precision (Positive 
Predictive Value, 

PPV), % 

Negative Predictive 
Value (NPV), % 

0.1 0 82.3 99.6 95.7 98.3 

0.2 0 81.7 99.0 95.5 95.4 

0.5 0 80.5 94.1 95.0 77.6 

0.7 0 80.5 88.1 94.7 63.2 

1 0 82.7 78.3 94.7 49.3 

0 2 81.7 99.3 95.5 96.8 

0.2 2 81.1 98.5 95.3 93.1 

0.5 2 80.7 92.3 94.7 72.7 

0 4 79.6 97.0 94.9 87.2 

0.2 4 79.6 96.4 94.9 85.1 

0.5 4 79.6 92.4 94.7 72.6 
 

Table 4: Model resistance toward noise. 
 
Thermographic data processing 
This section explores efficiency of some known data processing algorithms, namely, Thermographic Signal Reconstruction 
(TSR), Pulse Phase Thermography (Fourier transform), and Temperature Contrast.  Tab. 5 shows the quality metrics of the 
model (the minimum value between TPR and TNR), which was trained on the Train 5 dataset processed by using the above-
mentioned algorithms.  
 

 
Dataset 

Efficiency 

Raw temperature data Fourier phase 
TSR,  

1st derivative 
Contrast 

Validation 94.4 89.6 97.0 99.6 

Test 1 86.6 87.5 87.5 99.9 

Test 2 82.5 50.0 99.2 98.1 

Test 3 75.9 37.5 80.8 98.4 

 

Table 5: Data processing efficiency (Machine Learning model). 
 
The table illustrates that the use of Fourier phasegrams as input images has surprisingly corrupted the model performance 
making it inappropriate for detecting defects in the Test 2, 3 datasets. On the contrary, the use of the first derivative and 
contrast data has led to a notable enhancement of the model quality. For example, in the case of contrast, the sensitivity 
values consistently surpassed 98% across all test datasets. 
Fig. 5 provides the illustrations to the model efficiency while using various types of the training models, which are applied 
to one of the sequences related to the Test 3 dataset. 
Fig. 5a shows that the deepest defect was not detected when using raw temperature data. The same results but with some 
noisy indications and more distorted defect patterns were provided by the model where the raw data was corrupted by the 
Gaussian noise (Fig. 5b). Finally, all defects were detected when the machine learning model was trained on the contrast 
data (Fig. 5c). 
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a)                                                       b)                                                        c) 

 

Figure 5: Applying machine learning model: a) raw data training; b) raw data training, Gaussian noise (STD=0.5 °С); c) contrast data 
training.  
 
Discussion on merits and limitations 
This study provides a detailed analysis of how variability in training datasets impacts the performance of machine learning 
models for defect detection using IR thermographic data. By incorporating different training and testing datasets, this 
research systematically evaluates model generalizability and robustness. 
The choice of relatively simple yet effective models, such as SVM and Bagged Trees Ensemble, allows a clear understanding 
of how dataset variability influences model performance. These models have demonstrated effectiveness in other studies, 
thus reinforcing their suitability for particular applications. 
The study design, which implements multiple training and testing scenarios, facilitates the understanding of the model 
generalizability. By testing the accepted models on unseen datasets, this research assesses how well the models can adapt to 
new data, that is crucial for practical deployment. 
However, some limitations of the technique under discussion should be mentioned. Model Complexity: while the use of 
simple models like SVMs and Bagged Trees Ensemble allows for the clear analysis, it may limit the exploration of more 
complex relationships within the data; advanced models such as deep learning algorithms could potentially capture more 
intricate patterns, but they are not considered in this study. Dataset Limitations: the study relies on numerically simulated 
datasets, which, while controlled, may not fully capture the complexity and variability of real data; future work could include 
experimental data to further validate the findings. Overfitting Concerns: although cross-validation was used to mitigate 
overfitting, the performance of the models on highly variable datasets (Train 6) indicates potential overfitting; this suggests 
that while the models perform well on less variable datasets, their robustness on more complex datasets could be improved. 
 
 
CONCLUSION 
 

n this study, the possibility of enhancing defect evaluation in IR thermographic NDT through the application of 
Machine Learning Models has been explored. The suggested SVM and Bagged Trees Ensemble models were trained 
on the data derived from numerical simulations. The number of model parameters, including material thermal 

properties, specimen thickness and heating parameters, were analyzed in order to evaluate how general can be a model to 
be used in machine learning. 
It was demonstrated that the models trained on datasets with fixed parameters yielded limited defect detection capabilities. 
Introducing variations in heating parameters proved to be promising for detecting defects with minor parameter differences, 
but it appeared unsuccessful in cases that are more complicated. It is worth noting that the introducing of variations in 
specimen thickness and thermal conductivity worsened the model performance. The Train 5 dataset, which included subtle 
variations in specimen thickness, thermal conductivity, as well as various combinations of material density and heat capacity, 
provided the best results and a noticeable ability to identify defects in all test datasets. 
Furthermore, the model robustness in regard to noise was explored to demonstrate its ability to withstand additive and 
multiplicative random noise with a standard deviation up to 0.5 °C for additive and 2% for multiplicative noise. However, 
with noise greater than the above-mentioned thresholds, the model performance deteriorated increasing false negative 
indications. 
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The potentials of some known techniques of thermographic data processing, such as TSR, Fast Fourier Transform and 
Temperature Contrast, were examined. While the efficiency of Pulse Phase Thermography (Fourier transform) was 
surprisingly low, the use of the first derivatives (TSR) and contrast data significantly improved the model efficiency. In 
particular, the use of temperature contrast data ensured sensitivity (TPR) better than 98% across all test datasets. 
In conclusion, this study has revealed that machine-learning models exhibit a substantial potential for enhancing defect 
detection in IR thermographic NDT. However, further expanding results onto different materials and sample thicknesses 
requires careful selection of training data parameters, as excessive variability in the training data may lead to worsened results. 
Additionally, by performing proper data processing, in particular, determining temperature contrast, one may significantly 
enhance model performance. A deeper insight in this research area is a topic of further research.  
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